Single and Multiple Error Detection and Correction using Redundant Residue Number System for Cryptographic and Stenographic Schemes

Main Article Content

Peter Awon-natemi Agbedemnab
Edward Yellakuor Baagyere
Mohammed Ibrahim Daabo

Abstract

The possibility of errors being propagated during the encoding process of cryptographic and steganographic schemes is real due to the introduction of noise by ciphering the data from stage to stage. This real possibility therefore requires that an efficient scheme is proposed such that if after the decoding process the accurate information is not discovered, then it can be employed to detect and correct any errors in the system. The Residue Number System (RNS) by its nature is fault tolerant since an error in one digit position does not affect other digit positions; but the Redundant Residue Number System (RRNS) had been used over the years to effectively detect and correct errors. In this paper, we propose an efficient scheme that can detect and correct both single and multiple errors after and/or during computation and/or transmission provided the redundant moduli are sufficient enough. A theoretical analysis of the performance of the proposed scheme show it will be a better choice for detecting and correcting computational and transmission errors to existing similar state-of-the-art schemes.

Keywords:
Encoding, decoding, steganography, cryptography, residue number system (RNS), redundant residue number system (RRNS)

Article Details

How to Cite
Agbedemnab, P. A.- natemi, Baagyere, E. Y., & Daabo, M. I. (2020). Single and Multiple Error Detection and Correction using Redundant Residue Number System for Cryptographic and Stenographic Schemes. Asian Journal of Research in Computer Science, 4(4), 1-14. https://doi.org/10.9734/ajrcos/2019/v4i430123
Section
Original Research Article

References

Amos Omondi, Benjamin Premkumar. Residue number systems: theory and implementation, volume 2. Published by Imperial College Press and Distributed by World Scientific Publishing Co.; 2007.
ISBN 978-1-86094-866-4, 978-1-86094-867-1.
Available:http://www.worldscientific.com/-worldscibooks/10.1142/p523

Molahosseini AS, Navi K. New Arithmetic residue to binary converters. International Journal of Computer Sciences and Engineering Systems. 2007;1(4):295299.

Gbolagade KA. Effective reverse conversion in residue number system processors. PhD Thesis, The Netherlands; 2010.

Agbedemnab PA. Overflow detection and correction techniques in RNS arithmetic comutations. PhD Thesis, University for Development Studies, Tamale; 2015.

Dina Younes. Residue number based building blocks for applicaitons in digital signal processing. PhD Thesis, Czech Republic; 2013.

Bhardwaj M, T Srikanthan, Clarke CT. A reverse converter for the 4 moduli super set {2n − 1, 2n, 2n + 1, 2n+1 + 1}. IEEE
Conference on Computer Arithmetic; 1999.

Srikanth P, Abhinav Mehta, Neha Yadav, Sahil Singh, Shubham Singhal. Encryption and decryption using genetic algorithm operations and pseudorandom number. Computer Science and Network.;6(3):455459.

Chang CH, Low J, Yung S. Simple, fast, and exact RNS scaler for the three-moduli set {2n − 1, 2n, 2n + 1}. IEEE Transaction on Circuits and Systems I: Regular Papers. 2011;58(11):26862697.

Gbolagade KA, Chaves R, Sousa L, Cotofana SD. An improved reverseconverter for {22n+1 − 1, 2n, 2n − 1moduliset}. IEEE International Symposium on Circuits and Systems (ISCAS 2010). 010;21032106.

Bankas EK, Gbolagade KA. A residue to binary converter for a balanced moduli set {22n+1, 22n, 22n−1}. In Awareness Science and Technology and Ubi-Media Computing (iCASTUMEDIA). 2013;21216.

Agbedemnab PA, Bankas EK. A novel RNS overflow detection and correction algorithm for the moduli set {2n − 1, 2n, 2n + 1}. International Journal of Computer Applications. 2015;110(16):3034.
ISSN 09758887.
DOI: 10.5120/19403-0925
Available:http://research.ijcaonline.org/volu-me110/number16/pxc3900925.pdf

Leonel Sousa, Paulo Marins. Sign detection and number comparison on rns augumented 3-moduli sets {2n − 1, 2n+x, 2n + 1}. IEEE Transactions on Very Large Scale Integration Systems:
Journal of Latex Class Files. 2014;20(2).

Mohmmad Abdallah, Alexander Skavantzos. A systematic approach for

selecting practical moduli sets for residue

number systems. Proceedings of the 27th Southeastern Symposium on System Theory, SSST. 1995;445449.
DOI:10.1109/SSST.1995.390542

Bankas EK, Gbolagade KA. A speed efficient RNS to binary converter for the moduli set {2n, 2n + 1, 2n − 1}. Journal of Computing, 2012;4(5):8388.

Abdul-Barik Alhassan, Kazeem Alagbe Gbolagade, Edem Kwedzo Bankas. New lempel- ziv-welch fault tolerant data compression and encryption scheme. International Journal of Advanced Studies

in Engineering and Scientific Inventions (IJASESI). 2017;4(1):2536.

Lie-liang Yang, Lajos Hanzo. Redunctant residue number system based error correction codes. IEEE Transaction on Circuits and Systems I: Regular Papers. 2001;15.

Lie-liang Yang, Lajos Hanzo. Coding theory and performance of redundant residue number system codes coding theory and performance of redundant residue number system codes. IEEE Transaction on Information Theory.1999;(0):039.

Etzel M, W Jenkins. Redundant residue number systems for error detection and correction in digital filters. IEEE Transactions on Acoustics, Speech and Signal Processing. 1980;28(5):538545.
ISSN 0096-3518.
DOI: 10.1109/TASSP.1980.1163442
Available: http://files/38/login. html

Roshanzadeh M, Saqaeeyan S. Error detection & correction in wireless sensor networks by using residue number systems. International Journal of Computer Network and Information Security. 2012;4(2):2935.
ISSN 20749090.
DOI:10.5815/ijcnis.2012.02.05

Nor Zaidi Haron, Said Hamdioui, Zaiyan Ahyadi. ECC design for fault-tolerant crossbar memories: A case study. In IDT10 - 2010 5th International Design and Test Workshop, Proceedings. 2010;6166.
ISBN 9781612842929.
DOI:10.1109/IDT.2010.5724409

Abdul-Mumin Salifu, Kazeem Alagbe Gbolagade. An improved redundant residue number system based error detection and correction scheme for the moduli set. 2016;2(1):1114.
DOI: 10.11648/j.awcn.20160201.12

Vik Tor Goh, Mohammad Umar Siddiqi. Multiple error detection and correction based on redundant residue number systems. IEEE Transactions on Communications. 2008;56(3):325330.
ISSN 00906778.
DOI: 10.1109/TCOMM.2008.050401

Karthik G, Mohan Raj R, Karthik B. RRNS based error detection and correction in CDMA using chinese remainder theorem.;2(2):338341.

Peter Awon-Natemi Agbedemnab, Edward Yellakuor Baagyere, Mohammed Ibrahim Daabo. A novel text encryption and decryption scheme using the genetic algorithm and residual numbers. In

Kennedy Njenga, editor, Proceedings of 4th International Conference on the Internet, Cyber Security and Information Systems 2019, volume 12 of Kalpa Publications in Computing. 2019;2031. EasyChair
DOI: 10.29007/zd9h
Available: https://easychair.org/publications/-paper/kzG7

Gary W. Bewick. Fast multiplication : Algorithms and implementation. PhD Thesis; 1994.

Sheu M, Lin SH, Chen C, Yang SW. An efficient VLSI design for a residue to binary converter for general balance moduli set {2n − 3, 2n − 1, 2n + 1, 2n + 3}. IEEE Transactions on Circuits and Systems II.;51(3):152155.

Kumar Ch. Harish. Implementation and analysis of power, area and delay. International Journal of Scientific